问题:正方形铁皮, 边长为a,截去四角,做成一个无盖的方盒,怎样截角可能做到方盒体积最大?

解答:

体积方程:v=x(a-2x)2,0<=x<=a/2

方程求导:dv/dx=(a2x+4x3-4ax2)'

     =a2-8ax+12x2

     =(a-2x)(a-6x)

在(0,a/2)内驻点为X1=a/6,X2=a/2;

v(a/2)=0,v(0)=0;

v(a/6)=(2/27)a3

一张A4纸大小的铁皮,截去四角,做成一个无盖的盒子,怎样截角可能做到盒子容积最大?

A4 paper size:length*width=297*210

length:297-2x

width:210-2x

volume =(297-2x)( 210-2x)x

=62370x-594x2-420x2+4x3

=4x3-1014x2+62370x

上述函数的导数:[(4x3-1014x2+62370x)]'

=12x2-2028x+62370

12x2-2028x+62370=0

x=(-b±√(b2-4ac))/2a

√(b2-4ac)=√(4112784-2993760)=√1119024

=1057.839307267412898719450940954

X1=128.57663780280887077997712253975(as (210-2X1)<0,not qulified)

X2=40.42336219719112922002287746025



任意长宽的平面w*L

length=w-2x

width=L-2x

volume =(w-2x)( L-2x)x

=wLx-2wx2-2Lx2+4x3

=4x3-2(w+L)x2+wLx

〖(4x3-2(w+L)x2+wLx)〗^'

=12x2-4(w+L)x+wL

12x2-4(w+L)x+wL =0

(W+L±√(w2+L2-wL))/6

√(b2-4ac)=√(4112784-2993760)=√1119024

=1057.839307267412898719450940954

X1=128.57663780280887077997712253975(as (210-2X1)<0,not qulified)

X2=40.42336219719112922002287746025