算法

算法的大类、中类、小类

大类如排序、查找等算法;

中类是指在大类上应用的算法思想,如穷举(蛮力)法、贪心法、分治法、动态规划、回溯法;

小类是指在数据结构上应用的算法,包括增、查、删、改、遍历、图的最路径、最小生成树、树的遍历方法,线性表的二分查找,以及数据类型的运算符,类类型的操作符重载。

算法通常在函数中使用控制结构来实现。

1 算法分类

可大致分为:

基本算法、数据结构的算法(增、删、改、查、红黑树、大堆等)、数论与代数算法、计算几何的算法、图论的算法(如Dijistra最短路径、Huffman树)、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。

2 算法方法或思想

2 .1 分治:贪婪、动态规划、分支界限、迭代、递推、递归(问题相似、规模不同);

2 .2 穷举:DFS、BFS、剪枝、收敛、回溯;

大事化小的三种算法

1 贪婪法:不回溯,堆叠;如最短路径、最小生成树;

2 动态规划法:分阶段递推,如分书问题;

3 分治法:分解为独立的子问题,解决,合并,如快速排序、递归;

递归归朝着 “出口” 的方向变更参数;

枚举: 把一个问题划分成一组子问题, 依次对这些子问题求解

  子问题之间是横向的, 同类的关系

递归: 把一个问题逐级分解成子问题

  子问题与原问题之间是纵向的, 同类的关系

分治法所能解决的问题一般具有以下几个特征:

1 该问题的规模缩小到一定的程度就可以容易地解决;

2 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质

3 利用该问题分解出的子问题的解可以合并为该问题的解;

4 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。

因为问题的计算复杂性一般是随着问题规模的增加而增加,因此大部分问题满足这个特征。

这条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用

能否利用分治法完全取决于问题是否具有这条特征,如果具备了前两条特征,而不具备第三条特征,则可以考虑贪心算法或动态规划。

这条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然也可用分治法,但一般用动态规划较好。

动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题

但是经分解得到的子问题往往不是互相独立的。不同子问题的数目常常只有多项式量级。在用分治法求解时,有些子问题被重复计算了许多次。

如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就可以避免大量重复计算,从而得到多项式时间算法。

递归算法求解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。这种性质称为子问题的重叠性质。

动态规划算法,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只是简单地用常数时间查看一下结果。

通常不同的子问题个数随问题的大小呈多项式增长。因此用动态规划算法只需要多项式时间,从而获得较高的解题效率。

顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。

贪心算法和动态规划算法都要求问题具有最优子结构性质,这是2类算法的一个共同点。但是,对于具有最优子结构的问题应该选用贪心算法还是动态规划算法求解?是否能用动态规划算法求解的问题也能用贪心算法求解

回溯法

有许多问题,当需要找出它的解集或者要求回答什么解是满足某些约束条件的最佳解时,往往要使用回溯法。

回溯法的基本做法是搜索,或是一种组织得井井有条的,能避免不必要搜索的穷举式搜索法。这种方法适用于解一些组合数相当大的问题。

回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。

回溯法的基本思想

(1)针对所给问题,定义问题的解空间;

(2)确定易于搜索的解空间结构;

(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。

常用剪枝函数:

用约束函数在扩展结点处剪去不满足约束的子树;

用限界函数剪去得不到最优解的子树。

用回溯法解题的一个显著特征是在搜索过程中动态产生问题的解空间。在任何时刻,算法只保存从根结点到当前扩展结点的路径。如果解空间树中从根结点到叶结点的最长路径的长度为h(n),则回溯法所需的计算空间通常为O(h(n))。而显式地存储整个解空间则需要O(2h(n))或O(h(n)!)内存空间。

分支限界法

分支限界法与回溯法的不同

(1)求解目标:回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。

(2)搜索方式的不同:回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。

分支限界法基本思想

分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。

在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。

此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。

常见的两种分支限界法

(1)队列式(FIFO)分支限界法

按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。

(2)优先队列式分支限界法

按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。

有一个待办事项清单。你可将待办事项添加到该清单的任何地方,还可删除任何一个待办事项。一叠便条要简单得多:插入的待办事项放在清单的最前面;读取待办事项时,你只读取最上面的那个,并将其删除。因此这个待办事项清单只有两种操作:压入(插入)和弹出(删除并读取)。

本页共7段,265个字符,634 Byte(字节)